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Abstract—Importance of the condition monitoring and pre-
dictive maintenance in motion systems is growing up as motion
systems quantum and their complexity (number of axes, per-
formance parameters) increases with increasing the automation
of huge range of human activities and manufacturing processes.
Probability of failures increases with the system complexity.

Many faults and indication of their propagation in the electric
drives would require additional sensors or hardware, higher
bandwidth and sampling frequencies of feedback sensors, high
computing power etc. for development of sophisticated methods
to detect specific faults with good sensitivity, robustness and
reliability under any operating condition.

This paper presents an approach to the condition monitoring
and prognosis applicable into the existing systems. These methods
use the information available in the traditional electric drives
– especially the information from the individual sensors in a
voltage source inverter (VSI) and/or an electric motor. Condition
indicators for these methods are based on application specific
operating states or actions, which generates typical patterns in
the signals. The condition monitoring is based on observing the
deviations of these patterns between the healthy system and the
system with fault propagating. The implementation strategy is
described in the paper and some demonstration examples are
shown as well.

Index Terms—prognosis and health management, PHM, pre-
dictive maintenance, electric drive, condition indicator

I. INTRODUCTION

Prognosis and health management (PHM) in any technical
field is an actual topic in present. The motivation of using
them is in a system productivity, reliability and cost effectivity
increasing. Modern sensors, communications, computing hard-
ware and theories provide more and more capable resources
to implement the reliable solutions for PHM tasks. The effort
of the technicians and scientist in this field is presented in
many papers [1]–[4], but not many of them concentrate on
the implementation strategies into the existing systems.

This work focuses on condition monitoring and predictive
maintenance in the existing mechatronic systems. The Fig. 1
defines a general mechatronic system structure regardless if
existing or new the system is. The structure can be divided
into three layers: Layer 1 - an actuator and sensor layer
which includes VSIs and motors with their sensors. The
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Layer 2 represents centralized real-time controllers like PLCs
and Layer 3 is consisted of remote PCs and data storages,
parametrizing, watching and logging purposes. Generally, each
device in all layers can contain any computing hardware, data
storage and is able to communicate its data. The industrial
fieldbus communication like EtherCAT is supposed between
the Layers 1 and 2 serving for real-time control and data ex-
change. General ethernet communication is supposed between
the Layers 2 and 3.

All functionalities developed under this work need unified
strategy of implementation over the structure. The unification
rules create a platform [5] which should allow to extend
any mechatronic system with functionalities developed in the
project. One important rule is that SW functions are developed
under MATLAB Simulink. This enviroment allows translations
of Simulink blocks onto functions for various platforms using
C/C++ coder or PLC coder avaliable under Matlab.

PHM contains a chain of the tasks shown in Fig. 2 and
described in [6] . The tasks can be distributed over the defined
layers in various ways. In the article are presented distributions
and implementation approaches to the problem. Quantities and
process variables acquisition is always placed into Layer 1. As
a good example, quantities measured by the inverter sensors
(DC link voltage, heatsink temperature, motor position, phase
currents,...) can be considered or the additional sensors can
be installed into the Layer 1 (vibration sensors). On the other
hand, decision making activities need to be close to operators
and should be implemented into Layer 3. Implementation of
the other tasks of the PHM over all layers is a question of
possibilities of running user programs in the devices on the
individual layers and communication load optimization. Some
devices (drive inverters) cannot execute user code and data
preprocessing is not possible to perform inside them. All data
with demanded sampling frequency for diagnosis purposes
need to be transferred into upper layers and the communication
lines load increases. In case of some preprocessing possibility
in Layer 1 condition indicator computation can be performed
in this layer. Reduced data are transfered into the upper layers
for trend recording, RUL calculation and decission making.
Three different approaches to condition indicator obtaing in
existing mechatronic system are presented in following.



Fig. 1. Mechatronic system structure and layers definition.

Fig. 2. Prognosis and health management flowchart.

II. CONDITION INDICATOR IMPLEMENTATION OVER
MULTIPLE LAYERS

Optimization and a good performance of the diagnostic
functionalities in the existing system may utilize all resources
in the structure according to Fig. 1. Sensors, signal acquisition
HW, computing devices and communication lines in individual
layers can be assumed like these resourecs. All the resources
have to be utilized in the reasonable way to keep the them
under exhausting their limits to keep all original function-
alities reliable. Especially data preprocessing/condition in-
dicator computation in Fig. 2 can require multiply higher
data acquisition rate and shorter computation cycle then the
communication interval over all layers is. Significant data
reduction can be reached by performing the data preprocessing
in the lower layers to utilize computation and communication
capability reasonably. Many devices and inverters on Layer 1
can perform user programmed functions beside hard imple-
mented control functionalities. It can be the manufacturer’s
specific scripting language, some standardized programmable
system (e.g. IEC61131-3 PLC) or a user program running
under the certain operating system.

A. The i2t condition indicator

Well known i2t thermal protection method can be adopted
for the condition monitoring like a condition indicator in
case of monitoring a repeating process. The i2t protection
method is typically used in the electric drives for a motor
winding burning prevention due to over-current. The difference
between square of the instantaneous current and square of
nominal current is integrated/summed over the time according
to (1). In the other words, the thermal effect of over-current is
represented by the i2t value. The bottom limit of the integral
is zero.

i2tk = i2t(k−1) + (i2m(k) − i
2
nom)Ts (1)

The i2t value is compared to the i2tpeak value which is given
for the protected device, for example motor winding. The
i2tpeak value is represented by ipeak and Tpeak for the most
of the protected systems. The threshold value of i2t protection
is calculated according to (2)

i2tpeak = (i2peak − i2nom)Tpeak (2)

The protection is activated, when i2t value reaches the limiting
value i2tpeak and deactivated is after reaching the zero value.
The drive torque is limited during protection active state for
nominal value typically.

Many mechatronics systems repeat the same action every
working cycle under the same operating condition. Repeating
motion action with constant mechanical load can be charac-
terized by a typical energy consumption, action time, and
repating time courses of many state variables e.g. torque,
torque and magnetizing currents and many others. In the
other words, the state variables patterns can be compared
and analysed with difference expected for healthy and fault
propagating system.
I2t calculation according to (1) described above can be

adopted for current pattern analysis in such situations. I2nom
parameter value is replaced by the typical current value
for repeating action or slightly lower. Bottom limit of the
integrator input signal is added and set to zero value assuring
upward integration only during repeated cycle.

B. I2t condition indicator simulation

The simulink scheme of i2t calculation is shown in Fig. 3.
Using is assumed for PMSM drive thus the current inputs are
id and iq . Current vector magnitude is calculated based on
them. Integrator has to be cleared at the beginning and at read
the end of action. This functionality is implemented by two
enabled subsystems in Fig. 4. First one contains i2t calculation
scheme from Fig. 3. Enable signal allows integration in active
state and resets the integrator in inactive state. The second
subsystem uses inverted enable signal and serves for holding
integral value between falling edges of the enable signal.

The simulation in Fig. 5 shows id input current to the sim-
ulated method in the first graph. The current course represents
drive repeating acceleration and deceleration. The magnitude
of the current increases each cycle representing increasing



Fig. 3. I2t equation implementation in Simulink.

Fig. 4. Enable signal implementation in Simulink for i2t condition indicator.

friction. The increase is 1% during the whole simulation. The
inreasing of i2t indicator value in the second course is 15%. It
shows good method sensitivity to detect any friction issues in
the drive of permanent magnet weakening and other issues
leading to increasing current magnitude for any repeating
actions.

C. Experimental implementation

The experimental verification shows usage of the algo-
rithm developed in Simulink. Algorithm was translated using
MATLAB PLC coder and compiled in Gefran ADV200-S
commercial inverter. The inverter allows running Structured
Text PLC programs according to IEC 61131-3. Inverter was
connected to PMSM that was coupled with dynamometer.
Test setup is shown in Fig. 6. Fig. 7 shows the condition

Fig. 5. i2t condition indicator simulation results.

Fig. 6. Laboratory setup for verification.

Fig. 7. i2t condition indicator lab verification.

indicator value (red line) and the enable signal (blue line).
The torque on the shaft was increasing and the value of
the indicator rises as expected. The dynamometer weren’t
able to generate alternating load torque like in simulation
is presented. Implementation correctness was checked and
proven by manual calculation according to (1). Functionality
of the enable signal is proven as well.

III. CONDITION INDICATOR IMPLEMENTATION IN THE
LAYER 3

The condition monitoring of electrical drive systems is very
often based on the spectral analysis of the measured quantities.
In the case of electric drives, the currents, voltages, velocities
and positions are the most frequently measured quantities.
The spectral analysis is most often carried out from measured



phase currents in practice [7], [8]. Typically, this method
requires data that are sampled at the same or even higher
sampling frequency as the frequency of PWM update, which
corresponds to measurement on the Layer 1. Unfortunately,
data with the required sampling rate are usually not available
on the Layer 3. It is assumed that measured process quantities
will be available on the Layer 3 at 500 Hz sampling frequency.
This sampling frequency is insufficient for accurate spectral
analysis of the measured quantities of the electrical drives. It
is appropriate to use different approach that is able to operate
with measured data at this sampling rate, due to the above
mention limitation.

A. Park’s vector approach

In practice, the Park’s vector approach is used to detect an
inter-turn short-circuit [9]–[11], open-phase fault or all phase
open. This approach is also used to diagnose the state of the
rotor cage of asynchronous motors [12]. A broken rotor bar
can be detected by deformation of the circle shape of the Park’s
vector pattern [13], [14].

The Park’s vector method is based on the analysis of current
complex vectors of the three-phase electric motor in αβ-
coordinates [15]. There are three space vectors (a, b, c) for
three-phase motor that are mutually shifted by 120 ◦. The
analysis of the three-phase motor can be simplified using the
Clark transformation. This transformation allows reducing of
a three-phase system into a two-phase equivalent system.
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Where iα and iβ represent components of the Park’s complex
current vector. Subsequently, the individual complex vectors
can be displayed in the αβ- coordinate system with respect to
electrical position θe.

Assuming that the phase currents were measured in a steady
state at least during one electrical revolution, it is possible
to create a circular pattern centered on the origin of the
αβ- coordinate system. The Park’s current curve should be
a circular shape in the case of a healthy motor and gearbox.
In the case of faulty motor or gearbox, the shape of the Park’s
current curve is changed. The circular shape can be deformed
by parasitic harmonic components which are occurred in phase
currents. Therefore, the basis of the motor health evaluation
is the monitoring of the deviation in the current Park’s vector
pattern from its ideal circular shape. The deviation increases
with severity of the faults in motor or gearbox.

The measurements of the phase currents should be per-
formed in steady state under known operating conditions. In
the real case, it may happen that it is not possible to measure
simultaneously a complete data set to obtain the current Park’s
vector pattern under defined operation condition. Further com-
plication may arise if the sampling rate is not high enough for
the Park’s vector pattern to be composed of a sufficient number
of samples for condition monitoring. The data preprocessing
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Fig. 8. Verification of the Park’s vector approach.
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Fig. 9. The current Park’s vector patterns.

should be done if mentioned situations happen. The data
preprocessing can be used to find sections that were measured
under the same operation conditions but at different times.
Subsequently, the resulting current Park’s vector pattern can
be composed of several parts depending on the rotor position.

B. Simulation experiments

The verification of the Park’s vector approach is carried out
on the model of the drive system in the MATLAB/Simulink
2018b. Simulink block diagram (Fig. 8) is composed of the
inverter model, PMSM model, vector control algorithm and
mechanical part of the system. The gearbox model includes
meshing and viscous losses and fault model which allows
to set the rotational angle range for the faulted efficiency.
Furthermore, the backlash in gearbox is implemented which it
is defined by the difference between the position of the motor
shaft and the position of the output shaft of gearbox.

This subsection presents the simulation results of the Park’s
vector approach. Fig. 9 shows the resulting current Park’s
vector patterns for two states of the drive system that were
obtained with respect to the same operation condition. Shown
patterns are obtained from data that were measured in the
steady state (constant rotor speed). The data were measured
at the frequency of 500 Hz. The first current Park’s vector
pattern (blue crosses) represents the behavior of the drive
system when the efficiency of the gearbox is set to 5 %
in the rotational angle range 5 ◦. The fault is reflected by
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Fig. 10. The αβ-currents of PMSM with bearing fault.

circular shape deformation in the part of the pattern range
that corresponds to one electric motor revolution. For a more
detailed demonstration of the fault state of drive system, the
pattern is composed of data that was measured during more
mechanical revolutions. There is also shown pattern which
presents state of the drive system without fault status (red
crosses) for the comparison.

The αβ-current waveforms in time domain are shown in
Fig. 10. The error status is almost impossible to detect in αβ-
current waveforms in time domain when currents are measured
at sampling frequency 500 Hz. In contrast, the comparison of
current Park’s vector patterns from the Fig. 9 confirms the
fault.

IV. ADDITIONAL SENSOR INSTALLATION

A. The diagnostics based on a vibration signal

The vibration based diagnostics brings a significant ad-
vantage in the overall diagnostics of the machines [16]. It
has a strong contribution to the complete probability of the
evaluation of the propulsion health.

B. Diagnostics approaches

Several approaches of the diagnostics can be performed.
First type, well known and commonly used in the industrial
applications, contains of a vibration sensor mounted on the
measured machine and an evaluating front-end equipment.
All the data are transferred to the supervising system for
postprocessing and evaluation. A lot of measuring places are
processed simultaneously by almost one measuring device.
A significant part of the intelligence is implemented in the
upper system layer. Second type of the diagnostics approach
lies in using of some smart sensors performing a simple signal
processing and providing a decision system (upper layers)
only with the simple KPIs describing the overall status of the
machine or RUL estimation. A third type combines the two
aforementioned possibilities in a different ratio.

C. Key parameters in vibrodiagnostics

The RMS value in ISO band is very common and useful
value in the vibrodiagnostics [17]. Almost all the machines can
be evaluated according to this value. It has to be mentioned,
that not the absolute value of the vibration signal is a key
parameter, but its relative change compared to the initial state.
Thus it is important to store the historical values and create

a trend of the measured quantity. Since the RMS value is an
overall pointer of the machine health, its increased value only
serves as an indicator that something is happening with the
machine. However the type of the failure cannot be identified
from this value. A frequency analysis is a good procedure for
a detailed diagnostics of the machine, since every machine
failure has its response in the frequency spectrum.

D. Smart vibration sensor (SVS) performance

A complete vibration sensor consisting of two MEMS
sensors has been developed – see Fig. 11. Its advantage

Fig. 11. A photography of the SVS.

compared to the standard industrial ICP sensor [18] is in an
extended temperature range (up to 125 ◦C), a lower price
(at a tenth of the price for the standard accelerometer), an
increased reliability (due to using of two sensing elements)
and a modularity (the function of the sensor is strongly defined
by an internal firmware). Sensor measures signal from the two
accelerometers (the primary type, ADXL1002, is an uniaxial
with a HF range of up to 11 kHz and the secondary, ADXL355,
is a triaxial type with a LF range of up to 1 kHz) and transfers
it through RS485 bus to the upper supervising system. There is
currently no additional signal processing inside the sensor due
to relatively strict requirements for the complete timing of the
system and a low performance of the used processor. A more
detailed description can be found in [19]. The simplified
schematics of the sensor can be seen in the Fig. 12. Key param-

Fig. 12. A block schematics of the SVS.

eters of the sensor were measured on the calibration system
SPEKTRA CS18 with very good results – mainly sensitivities
of the particular elements, their frequency responses and cross
axial sensitivities. Measured frequency response of the sensor
can be seen in the Fig. 13. The characteristic is almost ideal
for both sensing elements, without any resonance. This results
confirm a good performance of the sensor for the industrial



Fig. 13. Frequency response of the SVS.

measurement applications in ISO band as well as other high
frequency measurements.

Fig. 14. The frequency spectrum of the damaged motor measured by the
SVS.

Also some practical issues were measured by the sensor due
to confirm its ability of measuring in the industrial applica-
tions. A simple motor and actuator were used as an industrial
machines with a different faults (unbalance, damaged bearing)
and the vibration signal was measured by the sensor. Measured
spectrum of the unbalanced 10-pole motor with the bent
shaft can be seen in the Fig. 14. First harmonic component
represents unbalance of a rotor, second harmonic represents
bent shaft and the last harmonic (10th) represents number of
poles in the rotor.

E. Resume

A complex measurement system for vibration diagnostics
containing the SVS and a supervising application (Ni cRIO,
LabVIEW application) has been developed and its parameters
in both the laboratory and the industrial environments were
checked with promising results.

V. CONCLUSION

Implementation of the predictive maintenance functionali-
ties into existing mechatronic system is demanded subject to
increase their effective utilization and minimize downtimes.

The purpose of the article was finding ways how to imple-
ment PHM functionalities into legacy mechatronic systems.
Structure and layers of general industrial mechatronic system
were defined. Ways of condition indicators implementation
were presented in the paper like most critical functionalities
in point of view of implementation techniques and data flow
optimization over defined layers. The other PHM functionali-
ties like condition indicators recording and RUL estimation are
supposed purely in Layer 3. Sufficient computing performance
and data storage capability is assumed in Layer 3.

Three approaches of these functionalities realizations differ-
ing in over-layers implementation were presented in the article.
The methods are based on existing sensors data and process
variables of the drive or on adding external sensors as well.

The first presented approach advantage is low data flow
between individual layers. Condition indicators implemented
in lower layers significantly reduce data flow for PHM pur-
poses. However, the method requires low layer devices with
capability of executing user defined functions. The method
cannot be universal for all brownfield devices and requires
various ways of programs downloading, parametrizing and
configuring.

The second way is implementation of condition indicators
into Layer 3. This approach is implementable much more
universally but requires transferring of all necessary process
data to Layer 3. The data sampling frequency is usually low
due to limited available capacity of communication lines.
Condition indicators need to by adopted for low sampling
frequencies for this case. The averaged Park’s vector trajectory
has to be acquired for multiple turns of motor and can be
assumed like a suitable method for Layer 3. Various parts
degradations and faults can be evaluated from shape of the
Park’s Vector Trajectory.

The third approach is fully universal, because dedicated
hardware is used. This solution can be implemented into
both the greenfield and brownfield. Mechanical vibrations are
measured by the Smart Vibrations Sensor, which is considered
as Layer 1 device, processed and handover to the upper
layers as the condition indicators. This approach does not
set any requirements for the system topology or inter-layers
communication capabilities since all the processing is done
in the separated hardware resource. This approach can be
applied also for the above mentioned ways – to sense e.g.
phase currents of the motor by a non-contact sensors (e.g.
Hall probes) and using a dedicated high performance and high
sampling speed capabilities hardware to compute the condition
indicators itself and only transfer them to the upper layers for
further processing.
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